Conditions of the Stomach (II)

R2 Kanyarat Olarachin, M.D.
<table>
<thead>
<tr>
<th>Page</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Hypertrophic Pyloric stenosis</td>
</tr>
<tr>
<td>02</td>
<td>Pyloric atresia</td>
</tr>
<tr>
<td>03</td>
<td>Pyloric duplication</td>
</tr>
<tr>
<td>04</td>
<td>Antral web</td>
</tr>
<tr>
<td>05</td>
<td>Gastric volvulus</td>
</tr>
<tr>
<td>06</td>
<td>Peptic ulcer</td>
</tr>
<tr>
<td>07</td>
<td>Gastric perforation in newborn</td>
</tr>
<tr>
<td>08</td>
<td>Congenital microgastria</td>
</tr>
</tbody>
</table>
Gastric volvulus
Introduction

- Rare
- Potentially life-threatening condition
- 21% of cases are neonates in recent studies
- Associated with diaphragmatic defect
- Older children: associated with neurodevelopmental delay and splenic abnormalities

- Infancy: acute complete volvulus
- Older children: chronic, partial volvulus
Introduction

- Primary gastric volvulus
 - Laxity of the gastric ligaments

- Secondary gastric volvulus
 - Paraesophageal hernia or diaphragmatic hernia
Etiology

- Abnormal rotation of one part of the stomach
- 180 – 360 degree
- Anterior direction

- Organoaxial (54%)
- Mesenteroaxial (41%)
- Combined (2%)
Pathogenesis

- About **two-third** of children with gastric volvulus has **diaphragm** eventration or herniation (paraesophageal, posterolateral, Morgagni)
 - Upward displacement of the transverse colon
 - Greater curve of the stomach was pulled up into the expanded left upper quadrant

- Other rare causes of gastric volvulus
 - Abnormal band or adhesion
 - Rectal atresia -> overdistention of the transverse colon
 - Congenital absence or left lobe liver resection
 - Congenital deficiency of the gastrocolic omentum
 - Asplenic syndrome
 - Post-operative complication in older children
Clinical features

- Adults and older children: Borchardt triad
 - Unproductive retching
 - Acute localized epigastric distention
 - Inability to pass nasogastric tube

- Neonates
 - Persistent regurgitation
 - Hematemesis, anemia
 - Failure to thrive
 - Chest infection, wheeze
 - Successful passing NG tube cannot ruled out
Diagnosis

- Plain abdominal radiograph
- Distend stomach in abnormal position
Treatment

- Acute gastric volvulus need appropriate resuscitation and urgent surgery
- Gastric decompression pre-operatively
 - Nasogastric suction
 - Needle aspiration might perform before manipulating a tensely dilated stomach and reducing the volvulus
- Abdominal approach is recommended
 - Can identify associated gastrointestinal tract anomaly
 - Accurate diaphragmatic repair
Treatment

- Gastrostomy
 - Fixation
 - Route for feeding
- Stamm gastrostomy
 - 10- or 12- French gauge Malecot catheter
 - Secured by a double-purse string absorbable sutures
Treatment

- Anterior gastropexy
 - Added if patients don’t have diaphragmatic defect
- Suture the greater curve of the omentum to the parietal peritoneum and the undersurface of the diaphragm with non-absorbable sutures
Treatment

- Endoscopic assisted percutaneous anterior gastropexy:
 Chronic mesenteroaxial volvulus in older children

- Laparoscopic anterior gastropexy:
 Older children with isolated gastric volvulus

- Fundoplication:
 - Might be needed if patients have gross gastroesophageal reflux
 - Crural repair alone might be sufficient

- Gastric volvulus due to a wandering spleen
 Splenopexy alone might be sufficient
Complication

- Prolonged gastric ileus
- Pyloric ischemia
- Gastric outlet obstruction
- Gastric necrosis
- Gastric perforation

- Mortality rate
 - 7.1% in acute gastric volvulus
 - 27% in chronic gastric volvulus
 - Untreated: mortality rate up to 80%
Acute and chronic peptic ulcer
Epidemiology

- Primary peptic ulcer disease
 - *H. pylori* infection
- Secondary peptic ulcer disease
 - Excessive acid production
 - Stress
 - Other conditions: e.g. Eosinophilic gastroenteritis, etc.
 - Drug-related: NSAIDS, Aspirin, Ethanol
Primary peptic ulcer disease

- Incidence: 5.4 : 100,000
- **Boys : Girls** 2-3X : X
- Infants and very young children: X : X
- Hyperacid secretion: Duodenal and pre-pyloric ulcer
- Strong familial tendency -> *H. pylori* cluster in family
- Incidence of *H. pylori* infection
 - Industrialized countries: 0.5% per year
 - Developing countries: 3%-10% per year
- **Risk factor** associated with *H. pylori* infection
 - Crowded living, low socioeconomic level, immigrants, infected family member, ethnicity
- Pathologic condition associated with *H. pylori* infection
 - Nodular gastritis, primary duodenal ulcer, gastric ulcer, Barett esophagus, gastric cancer, MALT lymphoma
Secondary peptic ulcer disease

- Stress ulcers 80%
- Associated with critical illness, major trauma
- Multiple superficial mucosal erosions at fundus of stomach
- Causative factors
 - Decrease mucosal blood flow
 - Disruption of the protective mucosal barrier
 - Intraluminal acidity
- Drug- and chemical-induced ulcer: resemble stress ulcers
- Cushing ulcer: overstimulation of the Vagus nerve due to increase intracranial pressure -> increase acid output
 - single, deep ulcer -> prone to perforation
Gastric physiology

- 19th week: acid secretion
- 34th week: pepsin secretion

- Term infant
 - Gastric hyposcretion: 5 – 48 hr after birth
 - pH 3

- Preterm infant
 - Diminished amount of acid and pepsin secretion
 - 33%: alkaline gastric pH
 - 20%: no acid production for 10 days

- Maternal gastrin secretion:
 - Infant high acid secretion rate d7-10
Pathophysiology

Aggressive factors
- Vascular injury: decrease microcirculation
- Cancer chemotherapeutic agents
 - Aspirin
 - NSAIDs
- Infectious agent: CMV, Herpes virus
- Increase systemic stress
- Increase pepsin secretion
- H. pylori

Defensive factors
- Mucosal circulation: adequate microcirculation
- Epithelial cell turnover
- Increase bicarbonate secretion
- Inhibit gastric acid secretion
- Anti-inflammatory drugs
- Preserve vascular CMV flow/microcirculation
- Restore epithelial cell surface catecholamines
- Mucous layer: glycoprotein, glycocalyx
- Bicarbonate layer: pH gradient
- Immunoglobulins: IgG, IgA
Clinical presentation

Primary peptic ulcer

- Infant
 - Refusal of feeding
 - Persistent crying
 - Vomiting

- Preschool-aged and school-aged
 - Vomiting

- Older children
 - Abdominal pain (vague, related to meals)
Clinical presentation

Secondary peptic ulcer

- Acute onset
- Upper gastrointestinal hemorrhage (92%)
- Vomiting
- Perforation
Diagnosis

- Clinical presentation
 - GI bleeding
 - Dysphagia
 - Persistent vomiting
 - Abdominal pain

- Gold standard: EGD (85%)
- Angiography: useful in locating a bleeding ulcer if rate of bleeding is at least 0.5 mL/min
Diagnosis

- *H. pylori* infection
- Invasive
 - EGD + biopsy:
 - nodularity in the antrum (specific but not sensitive)
 - Urease activity
- Non-invasive
 - *H. pylori* specific IgG
 - Urea breath test (> 2 yrs old)
 - Stool antigen test
Treatment

- Medical treatment
 - Antacids
 - H2 receptor antagonists

- Other agents
 - Selective anticholinergic
 - Proton-pump inhibitors
 - Cytoprotective agents
 - Anti-infective agents
Antacid

- Neutralize acid secretion
- Heal peptic ulcer
- Dosage: 0.5 mL/kg
 - 1 hr ac, 3 hr pc, hs
- Side effects
 - Diarrhea
 - Constipation
H₂ receptor antagonist

- **Cimetidine**
 - Dosage 20-40 mg/kg/day
 - Antiandrogen side effects

- **Ranitidine**
 - Dosage 6-9 mg/kg/day oral, 2-4 mg/kg/day IV
Proton pump inhibitor

- Inhibit the stimulation of gastric acid secretion at the final common pathway

- Omeprazole
 - Dosage 1 mg/kg/day, max 20 mg/day
 - Side effects: headache, nausea, abdominal pain

- Lansoprazole
 - Dosage 0.5 mg/kg/day up to 30 kg
 - 30 mg daily if BW > 30 kg
Cytoprotective agent

- **Sucralfate**
 - Negative charge of sulfated disaccharide adheres to positive protein charge of the injured mucosa
 - Stimulated mucous production and prostaglandin synthesis
 - Dosage 40-80 mg/kg/day
 - Side effects: constipation

- **Prostaglandin E**: misoprostol, enprostil, arbaprostil
 - Blocking production of cyclic AMP, stimulation of HCO3-, increase mucosal blood flow
 - Few data in children use
H. Pylori associated disease

<table>
<thead>
<tr>
<th>Medication</th>
<th>Dose</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin</td>
<td>50 mg/kg/day</td>
<td>14 days bid</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>15 mg/kg/day</td>
<td>14 days bid</td>
</tr>
<tr>
<td>Proton pump inhibitor</td>
<td>1 mg/kg/day</td>
<td>1 month bid</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>50 mg/kg/day</td>
<td>14 days bid</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>20 mg/kg/day</td>
<td>14 days bid</td>
</tr>
<tr>
<td>Proton pump inhibitor</td>
<td>1 mg/kg/day</td>
<td>1 month bid</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>15 mg/kg/day</td>
<td>14 days bid</td>
</tr>
<tr>
<td>Metronidazole</td>
<td>20 mg/kg/day</td>
<td>14 days bid</td>
</tr>
<tr>
<td>Proton pump inhibitor</td>
<td>1 mg/kg/day</td>
<td>1 month bid</td>
</tr>
</tbody>
</table>
Surgical treatment

- Reserved for peptic ulcer disease with complication
 - Perforation
 - Bleeding
 - Obstruction
 - Intractable pain

- Prefer vagotomy and pyloroplasty > gastric resection
Surgical treatment

- Bleeding or perforated ulcer in the first 1-2 wk of life
 - Hypersecretion of acid caused by maternal gastrin
 - Often respond to OG decompression, lavage

- If surgical intervention is needed,
 - Perforation: simplest method
 - Bleeding: simple suture ligation of the ulcer bed

- Chronic partial gastric outlet obstruction secondary to a congenital problem can result in peptic ulcer -> correct obstruction
Zollinger-Ellison syndrome

- Hypergastrinemia
- Relatively rare in children
- Diagnosis
 - Large gastric rugal fold
 - Duodenal dilatation
 - Edema of the small bowel mucosa
 - Confirmed by elevated serum gastrin, calcium infusion test

- Treatment
 - Total gastrectomy if cannot completely resect primary tumor
 - MEN1 can be present in 25% of cases
Stress ulcer

- Prevention is the best
- Medication: H2 receptor antagonists and PPI

- Major UGIB or recurrent UGIB: EGD
 - Therapeutic injection: hypertonic saline, epinephrine, ethanol
 - Cauterization: heater probe, bipolar coagulation, laser
 - Stand-by surgery

- Massive hemorrhage: need operation
 - Blood loss in 24 hr
 - < 2 yr: = total estimate blood volume
 - > 2 yr: = half of total estimate blood volume (80mL/kg)
Stress ulcer

- Treat underlying cause
- Simple surgical procedure: plication at perforation site, oversewing of the bleeding point
- Vagotomy and pyloroplasty: not interfere growth and development
Gastric perforation in the newborn
Introduction

- Rare condition in newborn
- Incidence 1 in 2900 live births
- 10-15% of all GI perforation in neonates and children
- Male : Female -> inconclusive
- Mortality 25%-50% in most case series
- Can occur in full-term, premature, and SGA neonates
History

1926

Siebold
First demonstrated GI spontaneous perforation

1950

Leger et al.
First successful repair of a neonatal gastric perforation

1969

Lloyd
Multiple predisposing factors (selective circulatory ischemia)
Etiology

Spontaneous
- Theories
 - Congenital absence of gastric muscle
 - Forced exerted during vaginal delivery
 - Pneumatic distention: perforate at fundus, ischemic change
- Recent study
 - Deficiency of tyrosine kinase receptor C-KIT$^+$ mast cell and a lack of C-KIT$^+$ interstitial cell of Cajal
 - Impair immunity and abnormal motility

Ischemic
- Physiologic stress
 - Prematurity
 - Asphyxia
 - Sepsis
 - NEC
- Redistribution of blood flow
 - Causing microvascular injury

Traumatic
- Pneumatic distention: mask ventilation, PPV
- Gastric intubation
Causes of neonatal gastric perforation

- Idiopathic (Spontaneous)
- Perinatal stress
- Iatrogenic
- Medication
Causes of neonatal gastric perforation

- Perinatal stress
 - Hypoxia
 - Asphyxia
 - Anatomic defect
 - Distal obstruction
 - Tracheoesophageal fistula
 - Congenital deficiency of gastric muscle
Causes of neonatal gastric perforation

- Iatrogenic
 - Nasogastric tube
 - Aggressive bag ventilation
 - Cardiopulmonary resuscitation
 - Positive pressure ventilation
 - Unintentional perforation during surgery (VP shunt)
 - Vaginal delivery
Causes of neonatal gastric perforation

- Medication
 - Indomethacin
 - Corticosteroids
Clinical presentation

- Often occurs at DOL 3-5 (within the first 7 days)

- Presentation
 - Feeding intolerance
 - Emesis contains blood
 - Rapid abdominal distention
Signs and symptoms

- Respiratory distress
- Hemodynamic instability
- Signs of shock
 - Hypothermia
 - Cyanosis
 - Poor peripheral perfusion
 - Low urine output

- Physical examination
 - Abdomen rapidly tense and tender (peritoneal irritation)
 - Subcutaneous emphysema at the abdominal wall or pneumoscrotum
Signs and symptoms

- Common site of perforation
 - Greater curvature
 - Posterior perforation into the lesser sac: insidious cause
 (Difficult to diagnose)

- Increase risk in pregnancy with complication
 Abruptio placentae
 Placenta previa
 Amnionitis
 Delivered by emergency caesarian section
Diagnosis

- Clinical history + physical examination + radiographic studies

- Finding in plain abdominal radiographs
 - 90% non-visualized stomach
 - Pneumoperitoneum
 - Subcutaneous emphysema
 - Pneumoscrotum
 - OG/NG outside the confines of the stomach
 - Pneumatosis intestinalis : NEC (co-exist)

- Laboratory investigation
 - Complete blood count - Blood cultures
 - Arterial blood gas - Electrolyte profile
Differential diagnosis

- Vomiting and abdominal distention
 - Hirschsprung’s disease
 - Intestinal atresia
 - Meconium ileus
 - Meconium plug syndrome
 - Imperforate anus
 - Perforated viscus
 - NEC
 - Midgut volvulus
Differential diagnosis

- Cardiovascular collapse
 - Sepsis
 - Pneumothorax
 - Cardiac dysfunction
 - Intraventricular hemorrhage
 - NEC
 - Perforated hollow viscous organ
 - Malrotation with midgut volvulus
Perioperative care

- Early recognition and prompt treatment
- Respiratory distress from marked abdominal distention
 - Require intubation and ventilatory support
- Broad-spectrum antibiotics
- Fluid resuscitation, blood transfusion
- OG/NG carefully passed and placed on low intermittent suction for gastric decompression
- Paracentesis with IV canula: lifesaving when abdomen overly distend and interfere ventilation
Surgical technique

- Upper abdominal transverse incision
- Dissect through the rectus muscle layer by layer until the peritoneum is entered
- The umbilical vein is divided
- Peritoneal fluid and debris are evaluated and sent for cultures (aerobic, anaerobic, fungi)
Surgical technique

- Explore site of perforation
 - Mostly spontaneous gastric perforation: along greater curvature
 - Duodenal ulcer: anterior wall or near the pyloroduodenal junction
 - Gastric ulcer: along lesser curvature near the antral-fundic junction

- If cannot find the perforated site, carefully explore the EG junction, duodenum, small bowel and colon
- Open lesser sac and inspected for contamination and lesion at posterior wall of stomach
Surgical technique

- Debrided non-viable tissue around the perforated site
- Closed defect in one or two layers +/- omental patch
- Extensive perforation or necrosis may require sub-total or total gastrectomy
 - If the greater curve is extensively necrosed -> resection
 - If the antrum is extensively necrosed -> Billroth I
- Reconstruction could be performed in stable infants
Reconstruction technique

- In total gastrectomy cases
 - Transverse colonic interposition
 - Roux-en-Y esophago-jejunal anastomosis
 - Hunt-Lawrence pouch reconstruction

- Staged surgery in unstable patients
 - Performed several weeks later when the patient’s condition has improved
Surgical technique

- Lavage abdomen with warm NSS
- Peritoneal drainage is not needed for most primary repairs
- The fascia and skin are closed in standard fashion
Post-operative care

- Continue broad spectrum antibiotics until ...
 - WBC and PMN within normal range
 - Evidence of bowel and gastric function returns
 - Clear and low volume OG content
- Gastric acid suppression therapy
- TPN
- Continue gastric decompression
- NPO until the patient has stabilized
- May obtain a contrast study before starting enteral feeding
Outcomes

- Isolated gastric perforation survival 75-80%
- Poor outcome associated with multiple-organ dysfunction, sepsis, immature immunologic function
- High morbidity and mortality in infants with gastric necrosis with extensive NEC
Congenital microgastria
Rare congenital anomaly of the caudal part of foregut
- Small, tubular stomach, megaesophagus, incomplete gastric rotation, normal mucosa
- Associated anomalies: VACTERL association
 - GI: Non-rotation of midgut with duodenal band with asplenia, absence of gallbladder
 - Skeletal: micrognathia, radial and ulnar hypoplasia, vertebral anomalies, oligodactyly, and hypoplastic nail (rare: anophthalmia)
 - CVS: single atrium, single ventricle, total anomalous pulmonary venous return into the portal vein
Clinical presentation

- Prenatal ultrasonography
 - Polyhydramnios
 - Small stomach
- Dilated esophagus with ill-defined E-G junction
- Vomiting
- Aspiration and pneumonia
- Bacterial overgrowth and blind-loop-like syndrome
 - Failure to thrive
 - Diarrhea
- Normal Schilling test
Diagnosis

- Upper GI study
- EGD: confusing results
- If patients have GERD
 Manometry
 Esophageal pH
- If patients have diarrhea and malabsorption
 Intestinal absorption studies
Treatment

- Medical treatment
 - Continuous or night-time OG feeding
 - If GERD develops, start prokinetic agents and acid-reducing therapy
 - Complication of GERDS may require NJ feeding or surgical jejunostomy tube feeding

- If stomach fails to enlarge, several authors recommended create a double-row jejunal reservoir (Hunt-Lawrence pouch)
Thank you for your attention

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik

Please keep this slide for attribution